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LONG-TERM GOALS 

The long-term objective is to determine how nonlinear interactions and directional spreading affect 
the spatial coherence and crest-length statistics of ocean surface gravity waves. 

OBJECTIVES 

To investigate the spatial coherence and statistical distribution of crest lengths of deep water ocean 
waves we have been developing and verifying with field observations the methodology to simulate 
two-dimensional sea surfaces with a specified frequency-directional spectrum and local nonlinearity 
described by theory. Our specific objectives are to 

• simulate realizations of the two-dimensional sea surface given a specified frequency-directional 
spectrum and incorporating local nonlinearity based on second-order theory 

• estimate crest-length statistics from the simulated sea surfaces for a range of wave conditions 

• compare simulated with remotely-sensed sea surfaces 

APPROACH 

We have developed the methodology to simulate realizations of a nonlinear sea surface with a speci- 
fied ('target') frequency-directional or wavenumber spectrum and a specified bispectrum. The bispec- 
trum describes statistically the phase relationships between triads of nonlinearly interacting waves, for 
example the quadratic difference interaction that couples two swell waves (with wavenumbers kp and 
kp + S where S is a small number) and a low frequency long wave with wavenumber 5), or sum inter- 
actions that couple swell with higher harmonics. The simulation algorithm accounts for interactions 
between waves traveling in different directions. The target wavenumber spectrum can be obtained 
from observations, the output of a wave prediction model, or theory. The target bispectrum can be 
obtained from observations or from second-order nonlinear theory given the wavenumber spectrum. 
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To test second-order nonlinear theory, statistics of the observed wave field (eg, higher-order spectra, 
sea-surface elevation skewness, crest length) are compared with statistics from sea surfaces simulated 
from the observed wavenumber spectrum and the corresponding bispectrum consistent with second- 
order theory. 

WORK COMPLETED 

Software to estimate higher-order spectra of sea surfaces has been produced. In addition, the theory to 
determine the bispectrum from the wavenumber spectrum estimated with observations from a moving 
platform (eg, an airplane) has been developed. Simulations with narrow (Figure 1) and broad (Figure 
2) frequency-directional spectra show differences in the corresponding sea surfaces. In particular, the 
groups are larger (more big waves in a row) and the crests are longer for narrow band sea surfaces 
than for the broad band waves. 

Wavenumber and higher-order spectra have been estimated from LIDAR observations (provided by 
P. Hwang, NRL) of the sea surface. Theoretical bispectra have been calculated from the observed 
wavenumber spectra, and both theoretical and observed bispectra have been used as input to simulate 
realizations of the sea surface. 

RESULTS 

The bispectrum estimated from the observed wavenumber spectrum and second-order nonlinear the- 
ory compares well with the bispectrum estimated directly from LIDAR images of approximately 1 m 
high waves in 20-30 m water depth near the North Carolina coast. Third-order statistics of the sea 
surfaces obtained from numerical simulations using the observed wavenumber spectrum and either 
the observed or theoretical bispectrum compare well with the statistics of the observed sea surface, 
verifying both the simulation technique and second-order nonlinear theory. 

IMPACT/APPLICATIONS 

An impact of this research is the verification of second-order theory for directionally spread waves, 
allowing realistic nonlinear sea surfaces to be simulated given the wavenumber spectrum. 

TRANSITIONS 

RELATED PROJECTS 

The research performed here is related to our investigations of the evolution of waves across the 
continental shelf (SHOWEX) and the nearshore and surfzone (SandyDuck). 

PUBLICATIONS 

Herbers, T.H.C, Steve Elgar, N.A. Sarap, and R.TGuza, 2000 Dispersion properties of surface gravity 
waves in shallow water, J. Physical Oceanography, submitted. 
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Figure 1. Sea surfaces consisting of lowest-order wind generated waves with broad (upper) 
and narrow (lower) frequency-directional spectra, and second-order nonlinear waves consis- 
tent with theory. The amount of nonlinear coupling for each pair of wind waves and the corre- 
sponding sum or difference second-order wave is a function of the wavenumber spectrum and 
the frequencies of the first-order wind waves. The significant wave height is 5.7 m. The colors 
are sea-surface elevation (red is wave crests, dark blue is troughs). The small panels on the left 
and bottom of the color contours are ID cuts through the center of the sea surface (dotted lines 
on the sea surfaces show the locations of the ID surfaces). 
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